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We consider single-phase gases in which the fundamental derivative is negative over 
a finite range of pressures and temperatures and show that inadmissible 
discontinuities give rise to shock splitting. The precise conditions under which 
splitting occurs are delineated and the formation of the split-shock configuration 
from smooth initial conditions is. described. Specific numerical examples of shock 
splitting are also provided through use of exact inverse solutions. 

1. Introduction 
Bethe (1942) and Zel’dovich (1946) were the first to discuss the possibility of 

expansion shocks in single-phase fluids. Expansion shocks are gasdynamic shocks in 
which the usual entropy increase across the shock requires a decrease, rather than 
increase, in the pressure and temperature. Such shocks are possible in fluids which 
have specific heats large enough to cause the fundamental derivative 

to become negative for a range of temperatures and pressures in the general 
neighbourhood of the thermodynsmic critical point. This region is depicted in figure 
1 for the special case of a van der Wads gas with a constant specific heat. In this 
study we refer to fluids which possess such a region of negative nonlinearity (r < 0) 
as Bethe-Zel’dovich fluids. An important contribution to the issue of the existence 
of negative nonlinearity is due to Lambrakis & Thompson (1972) and Thompson & 
Lambrakis [ 1973) who employed realistic equations of state to give examples of 
practical fluids having r < 0 over a finite range of pressures and temperatures. 

When r is negative for all pressures and temperatures encountered in a particular 
flow, the wave evolution is seen to be essentially the same as that for r > 0 provided 
one takes into account the backward steepening and necessity of expansion shocks. 
Recent studies have shown that the flow can show significant qualitative differences 
with the r > 0 case if rchanges sign within the flow ; we refer to cases where rchanges 
sign as those of mixed nonlinearity. Although mentioned by earlier authors, the first 
extensive discussion of sonic shocks was given by Thompson & Lambrakis (1973). 
Sonic shocks are shocks having a speed identically equal to the convected sound 
speed immediately upstream or downstream of the shock and are not possible if r is 
strictly positive or strictly negative. Cramer & Kluwick (1984)’ Cramer et aE. (1986) 
and Cramer & Sen (1987) have shown that mixed nonlinearity may also result in a 
partial or total disintegration of both compression and expansion shocks ; the partial 
disintegration results in a sonic shock and centred fan. The complicated dynamics of 
sonic shocks have also been described by Turner (1979, 1981) in the context of 
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FIGURE 1.  Constant f = pT/a  contours for a van der Waals gas with c J R  = 50 = constant. 
The subscript c denotes conditions at the thermodynamic critical point. 

superfluid helium, by Lee-Bapty (1981) in the context of Kelvin-Voigt solids and 
Lee-Bapty & Crighton (1987) in the context of a modified Burgers equation. 

Cramer & Sen (1986~)  and Cramer (1987 b, c) have demonstrated that compression 
shocks of sufficient strength may be subject to shock splitting, i.e. the original 
discontinuity splits into two sonic shocks separated by an isentropic compression 
fan. The present paper provides the full description of this phenomenon including its 
relation to the basic shock admissibility conditions and, in particular, the existence 
of a dissipative structure. 

When r is either strictly positive or strictly negative, the entropy inequality is 
sufficient to rule out inadmissible discontinuities. When r changes sign across the 
proposed discontinuity, the entropy inequality is no longer sufficient and more 
general conditions must be imposed. Thompson & Lambrakis (1973), Cramer & 
Kluwick (1984) and Cramer & Sen (1987) employed a speed-ordering relation which 
required the flow to undergo a supersonic-subsonic transition across the shock. The 
relation of this condition to the existence of a dissipative structure was discussed by 
Cramer & Kluwick (1984), Lee-Bapty & Crighton (1987) and Cramer (1987 a). Cramer 
(1987b) has pointed out that even the speed-ordering relation may not be sufficient 
when the flow is taken from one side of the region of negative nonlinearity to the 
other. In particular, discontinuities may be constructed which satisfy the usual 
inviscid condition, viz. the RankineHugoniot jump conditions, the entropy 
inequality and the speed-ordering relation, but which do not possess a dissipative 
structure. This fact is proven in $ 3  of the present study by inspection of the phase 
plane of the classical shock structure model. 
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Once admissibility conditions have been established, the evolution of inadmissible 
discontinuities are of interest ; the present study shows that any complete description 
of this evolution must involve shock splitting. In $ 4  we delineate the conditions 
under which shock splitting occurs in arbitrary Bethe-Zel'dovich fluids and relate 
this to the partial disintegration of inadmissible shocks described by previous 
investigators. We also provide a specific numerical example of shock splitting 
through use of the exact solutions of Cramer & Sen (1987). In $5 we demonstrate that 
the split-shock configuration is not just possible but will always evolve from smooth 
initial conditions, at  least within the context of the isentropic approximation 
employed. 

The conclusions of this study are obtained from a relatively small collection of key 
facts. In $ 2  we summarize these facts along with the fundamental assumptions 
employed. 

2. Formulation and useful identities 
We restrict our attention to single-phase Navier-Stokes fluids satisfying the 

inequalities 
- -  

p U 0 ,  3 h + 2 p > O 1  k 

PJ > 0, c, > 0, 
' P  T 

where T ,  P ( P , T ) ,  4p,T) ,  k ( p , T ) ,  p ( p , T ) ,  c,(plT) and P ( p , T )  are the absolute 
temperature, shear viscosity, second viscosity, thermodynamic pressure, specific 
heat a t  constant volume and the coefficient of thermal expansion. The first set (2.1) 
guarantees that the second law of thermodynamics is always satisfied. The second set 
(2 .2 )  arises from the requirement of thermodynamic equilibrium. The usual 
manipulations of thermodynamics result in the well-known relations 

(2.4) c p  > c, > 0, 

where c p  is the specific heat at constant pressure. The condition that /3 be positive is 
not mandated by any general principle but is assumed here for the sake of 
convenience. Most vapours are expected to satisfy (2 .3 )  although it is known that 
p < 0 for some substances, e.g. water at  temperatures between 0 "C and 4 "C. 

Shock waves are required to satisfy the Rankine-Hugoniot jump conditions : 

[pvl = 0, (2.5) 

bl _-  [vl - -m2,  

where the subscripts 1 and 2 denote properties upstream and downstream of the 
shock, the square brackets denote the jump in any quantity, i.e. 

[A]  = A,-A, ,  

10 FLM 199 
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v is the particle velocity measured in a frame moving with the shock, V E l /p  is the 
specific volume, 

- 
m E plvl = pa", 

is the mass flux and h(p,T) is the enthalpy. Equations (2.5)-(2.7) express the 
principles of conservation of mass, momentum and energy, respectively. A further 
requiren,ent is that the entropy inequality 

be satisfied for all admissible shock waves. 
The energy equation (2.7) gives the locus of thermodynamic states which may be 

connected by a shock wave. We refer to p , V  pairs satisfying (2.7) as the Hugoniot 
curve or shock adiabat. The general form of the adiabat and, in particular, the 
curvature is of central interest in the present study. A simple proof of the important 
features is obtained by considering the variation of the entropy along this adiabat : 

ds [VI2 dm2 2- _-- 
dV, 2T2 dV2' 

(2.10) 

This result is derived by combining Gibbs' relation 

dh = Tds+ Vdp (2.11) 

with (2.7) and may be found in most standard treatments of gasdynamics, see, e.g. 
Landau & Lifshitz (1959, $84). Because dm2/dV2 is of order one, at  most, as V, 
approaches V, we have 

(2.12) 

as V, approaches V,. Relation (2.12) is recognized as a variant of Bethe's relation 
which states that [s] = 0([Vl3)  in the weak-shock limit. We now note that the 
pressure along the shock is given by 

(2.13) 

where p, = p( V,, s,) = p( V,, s2( V,)). In the limit of vanishing shock strength we 
find 

lim 2 dP = -1 aP ( v ~ ,  sl). 
Va + Vi dV, a V ,  

Use of well-known thermodynamic identities along with (2.2) and (2.4) yields 

where y = c p / c ,  > 1 is the ratio of specific heats. Thus, the slope of the adiabat 
dp/d V in single-phase gases is necessarily negative for all pressures and temperatures. 

may be employed to show that the curvature, proportional to 
-~ 

A iimilar analysis 

has the same sign 

-=-+2--+ de, a2p (as 2 a2p -+-- des2 ap d2p, a2p 
dVi aV2 dV,aVas dV, as2 dVi as' 

as the local value of I', That is, 

a=P 2a 

v,+v, dVi a V 2  vl: lim - dzp2 =-(V1,s1) = - - q V 1 , s l ) ,  

(2.14) 

(2.15) 
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FIGURE 2. Sketch of a typical shock adiabat entering the r < 0 region. 

where the subscripts 1 denote quantities evaluated at V,, sl.  Standard thermo- 
dynamic identities were used to relate r to a2p/aVz, see, e.g. Thompson (1971), 
and the derivative of (2.10) was required to show that 

-- d2s: - O( [ V ] )  
d V ,  

as V, approaches V,. Thus, the shock adiabat is concave up at every point at which 
r > 0 and is concave down at every point at which r < 0. The shock adiabat of 
Bethe-Zel’dovich fluids will therefore be similar to that sketched in figure 2, at least 
those adiabats which enter the region of negative nonlinearity. 

The speed of a shock may be related to the slope of a straight line connecting the 
upstream and downstream states through the well-known identity 

(2.16) 

where M, = vJal  = mV,/a, is the shock Mach number. By combining the definition 
of the Mach number, (2.6)-(2.8) and (2.11), a second identity may be derived which 
relates the downstream Mach number M, to the slope of the chord connecting the 
upstream and downstream states and the slope of the adiabat. This reads 

(2.17) 
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We note that the denominator vanishes for compression shocks having 

This is the usual singularity in which p ,  goes to positive infinity as we approach from 
the right in the (p, V)-diagram. In the case of perfect gases this singularity occurs a t  
V, = V,(y - l)/(y + 1). Here we restrict our attention to the region to the right of this 
singularity, i.e. to shocks having 

Relation (2.17) may then be used to show that 

dPz I31 M ,  5 1 whenever - 5- 
dV2 [VI 

(2.18) 

and, in particular, tangency points such as s in figure 2 correspond to M ,  = 1 ; this 
is recognized as a sonic shock. A relation similar to (2.17) may be derived for M ,  from 
which we may show 

dP l<  bl 
M ,  2 1 whenever - 5-* 

dV1 [VI 
(2.19) 

Results (2.18) and (2.19) are useful in that we may determine whether the flow 
upstream or downstream of a shock is supersonic or subsonic by a simple visual 
inspection of the shock adiabat. 

The sign of the entropy jump may be deduced from the following identity: 

where AH 1 l p d V  

(2.20) 

is the area under the shock adiabat from state 1 to 2 and 

is the area under the straight line connecting states 1 and 2. A result similar to (2.20) 
was given by Thompson & Lambrakis (1973). Its derivation combines (2.7) with a 
straightforward integration of Gibbs' relation (2.11). Because T > 0, the sign of [s] 
is the sign of the integral on the left of (2.20). To illustrate the application of this 
result we consider shock 2-3 and the double sonic shock 0 1 - 0 2  in figure 2. From 
(2.20) it is clear that both shocks must be expansion shocks in order to satisfy the 
entropy inequality. 

The shock between states 1 and 4 in figure 2 is of particular interest in the present 
study. As sketched IA,1 > lAHl which from (2.20) implies that this shock satisfies the 
entropy inequality only if the upstream state is at  1, i.e. shock 1 4  is a compression 
shock. Conditions (2.18) and (2.19) show that this corresponds to a supersonic- 
subsonic transition, i.e. M, > 1 > M,.  In the next section we show that com- 
pression shocks of this type do not possess a dissipative structure and will not 
remain as a single discontinuity. In $4 these inadmissible discontinuities are shown 
to result in shock splitting. 
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3. Dissipative structure 
The usual model for the dissipative structure takes the flow to be steady, one- 

dimensional and governed by the Navier-Stokes equations. The resultant system is 
a set of three equations expressing conservation of mass, momentum and energy. It 
is well-known that the first integral of these equations may be written 

pw = m, (3.1) 

(A+2p)w’ = F(w,T) =p-pj+m(w-w,) ,  (3.2) 

(3.3) ICT = G(w, T )  = m(e-ei)+pi(w-vi)-+(w-wi)2, 
where primes denote differentiation with respect to the distance in the flow direction 
x and the subscripts i denote either the upstream (i = 1 )  or downstream (i = 2) state. 
The constant m is the mass flux (2.8) and inequalities (2.1) may be employed to show 
that A+2p > 0. The solutions to (3.1)-(3.3) are required to approach constants as 
x -+ f m. In particular 

when (3.4) are applied to (3.1)-(3.3) we find that the Rankine-Hugoniot conditions 
of the previous section are recovered. In particular, it  may be shown that an 
alternative expression of the jump conditions (2.5)-(2.7) may be taken to be 

m = constant, F(wl,!Q = 0, G(v,,T,) = 0. (3.5) 

which follow from the definitions of F and G .  
When r is strictly positive the shock adiabat is concave up and there are only two 

roots to (3.5). The existence and uniqueness of a solution curve to (3.1)-(3.3) which 
satisfies (3.4) was first given by Gilbarg (1951). The corresponding phase plane is 
sketched in figure 3 (a). When r is strictly negative, the adiabat is concave down and 
there are again only two singular points in the phase plane. It is a straightforward 
exercise to extend Gilbarg’s arguments to this case ; the phase plane for the r < 0 
case has been worked out and is sketched in figure 3(b). 

The Rankine-Hugoniot conditions (2.5)-(2.7) or (3.5) have more than two 
solutions when problems involving mixed nonlinearity are considered, see e.g. figure 
2. The corresponding phase plane may be shown to be that sketched in figure 4. The 
analysis of Gilbarg may be applied to pairs of neighbouring roots to demonstrate the 
existence and uniqueness of solution curves between neighbouring pairs. However, 
the new issue raised by the existence of additional roots is whether solution curves 
exist between non-neighbouring roots. The fact that such solutions are impossible 
follows from the observation that 

where the inequalities follow immediately from (2.2) and (2.3). The P = F ( v , T ) ,  
G = G(v,T)  curves are sketched at selected fixed values of w in figure 5. Thus, for 
every T ,  w pair outside the F = 0, G = 0 curves 
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FIGURE 3. Phase planes for r (a) strictly positive and (b )  strictly negative. 

Because no solution connecting non-neighbouring points may be constructed which 
satisfies (3.6) (at least one point will have dT/dv < 0) we conclude that solution 
curves are only possible between neighbouring roots. A solution starting at  any root 
will inevitably be attracted to the appropriate neighbouring root and will arrive at  
that root only as z -+ 00. Thus, if the chord connecting two shock states p,, V, and 
p e l  V, on an adiabat intersect the adiabat at an intermediate point p i ,  V,, then no 
dissipative structure may be constructed and the corresponding shock between 
states 1 and 2 is inadmissible. This is recognized as equivalent to Lax's generalized 
entropy condition (Lax 1971) which states that the chord connecting acceptable 
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FIGURE 4. Phase plane with mixed nonlinearity. Proposed discontinuity is of the 
type 1 4  in figure 2. 

FIGURE 5. Variation of P(v, T) and G(v, T) for fixed v. Case (a) is typical of v, > v > v2, v, > v > v,? 
and case (b)  is typical v2 > v > vg,  v < v4, v > vl in figure 4. 

upstream and downstream states lies entirely above or entirely below the adiabat 
connecting the same point. 

If we consider the upstream state r and corresponding shock adiabat H ,  sketched 
figure 6, we conclude that unacceptable downstream states are those between 81  and 
M and, of course, those resulting in expansion shocks. 

It is of interest to note that upstream and downstream states may be found which 
satisfy the shock jump conditions and entropy inequality but, owing to the existence 
of two intermediate intersection points, have no dissipative structure. One example 
is provided by shock 1 4  in figure 2. A numerical example may be computed for the 
special case of a van der Waals gas. If c,  is taken to have the constant value 50R and 
the upstream pressure, density and Mach number are given by 0.85pc, 0 . 5 ~ ~  and 
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FIGURE 6. Shock adiabats corresponding to shock splitting. H I  is the shock adiabat fixed by the 
upstream state r ,  H ,  is the adiabat of the second shock and the dashed line marked I is the isentrope 
through 81. 

1.0124, the downstream pressure, Mach number and entropy jump are calculated to 
be i.lpc, 0.696,O.g x iO-3R. It may be shown that the chord connecting these states 
intersects the adiabat a t  two intermediate states. Thus, no dissipative structure 
exists and the shock is inadmissible. 

4. Shock splitting 
We describe the shock-splitting process through use of a relatively simple initial- 

value problem. The initial density distributions will be taken to be a series of 
compressive step functions. In  each case, the particle velocity will be taken to be 
consistent with pure right-moving waves. The undisturbed medium will be taken to 
be at rest and uniform. The thermodynamic state ahead of (to the right of) the 
discontinuity will be taken as fixed and will be denoted by the subscript r .  The 
approach will be to demonstrate the wave evolution as the density after the initial 
discontinuity is increased continuously. The subsequent evolution is plotted in figure 
7 and the various shock adiabats and isentropes have been sketched in figure 6. 

When the strength of the initial discontinuity is sufficiently small, the shock will 
be admissible and therefore remain intact. This case corresponds to the weakest 
shock seen in figure 7. The precise range is V,, < V < V, in the notation of figure 6. 
When the proposed strength is sufficiently large, the partial disintegration described 
by Cramer & Kluwick (1984) and Cramer & Sen (1987) occurs. In  figure 7 this case 
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FIGURE I. Computed density distributions. Gas model is that of van der Waals with c, = 50R. 
Undisturbed state is a t  rest and has pressure and density of 0 . 7 5 ~ ~  and 0 . 4 2 ~ ~ .  The horizontal scale 
is a non-dimensional position. Each distribution corresponds to the same time. 

x 

corresponds to the initial condition having a downstream state approximately equal 
to 0 . 7 5 ~ ~ .  The proposed inadmissible discontinuity is of the type 1-3 in figure 2. The 
sonic shock is represented by the tangent chord r-S1 in figure 6. The thermodynamic 
states in the compression fan follow the isentrope labelled I in figure 6. Relation 
(2.10) may be used to show that 8 1  corresponds to a local maximum in [s] on H I ;  
thus I is tangent to H ,  at 81. The fact that I lies above H ,  in the vicinity of S1 
follows by further noting that the entropy is an increasing function of pressure with 
constant V ;  this fact in turn follows by standard thermodynamic manipulations and 
application of (2.2) and (2.3). 

The sonic shock-compression fan structure is correct for all downstream states 
having V, G V G V,, in the notation of figure 6.  Here V, is the value of V at which 
the isentrope crosses the r = 0 locus; this corresponds to an inflexion point of the 
isentrope. The convected sound speed of each point on a right-moving simple wave 
is given by 

v = V+U = V,+U,+ f(p,s,)dp, (4.1) I* 
where the asterisk subscript denotes an appropriate reference state. This result was 
employed by Cramer & Sen (1987) in a similar initial-value problem and an analogous 
expression in terms of a pressure integral was also given by Thompson & Lambrakis 
(1973). Differentiation of (4.1) with respect to density yields 

which demonstrates that the r = 0 locus also corresponds to a local maximum or 
minimum of the convected sound speed. Thus, if the strength of the initial 
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discontinuity exceeds that given by V, the compression fan curls over to become 
triple- valued. 

In the usual way, the multiple-valued solutions must be replaced by a shock. The 
upstream state of this shock must always lie in the region of negative nonlinearity. 
The discussion of $2 demonstrates that the adiabat for this second shock will always 
be concave down at the upstream state; this adiabat is denoted by H ,  in figure 6. 
ks a result, we may always construct an  admissible sonic shock connecting a 
point on the isentrope in figure 6 to  the imposed downstream state V,, p ,  provided 
V, < V, < 5. The fact that a downstream state always exists is seen by noting that 
the adiabat becomes concave up and remains so once H ,  leaves the region of negative 
nonlinearity. The fact that  the entropy rise is always positive is seen by applying 
(2.20). The choice of a sonic rather than non-sonic shock preserves the self-similar 
nature of the flow implied by the initial condition. Any other choice would result in 
a relative motion between the second shock and the compression fan until the sonic 
condition just assumed is attained. In  figure 6, this spiit-shock configuration is that 
corresponding to the downstream density of pc, approximately. 

As the strength of the initial discontinuity is increased, the second shock becomes 
stronger with V,, approaching V,, and V, approaching V,. When V,, = V,, and 
V, = V,, the compression fan disappears and the adiabat of the second shock coincides 
with that of the original shock. The two shocks then merge to  form a single shock. 
When the strength of the initial discontinuity is increased further, the chord 
connecting the upstream and downstream states remains above the adiabat, see 
figure 6, and the initial discontinuity again propagates as a single classical 
compression shock. An example of this large-amplitude compression shock is that 
having the downstream density of 1.39pC, approximately, in figure 7. 

In  summary, we have shown how to construct solutions for the full range of step- 
function initial conditions described at the beginning of this section. Both the small- 
and large-amplitude cases, i.e. those having downstream specific volumes in the 
range V,, < V, < V, and V, < V,, correspond to admissible shocks and propagate as 
classical non-sonic compression shocks. As shown in $ 3, initial conditions for the 
intermediate cases correspond to  inadmissible shocks. When the downstream specific 
volume lies between V, and V,, the shock suffers a partial disintegration into a 
sonic shock and compression fan. A second shock is seen to be required when 
V, < V, < Vt;  this is recognized as shock splitting. 

We close this section with a brief description of the computations leading to  the 
plots found in figure 7. The fluid is taken to be a van der Waals gas with constant 
c v ;  thus, the exact solutions for sonic shocks given by Cramer & Sen (1987) may be 
employed. I n  particular, the disintegration into a sonic shock-compression fan is 
just a special case of calculations presented by Cramer & Sen (1987). The split shock 
is simply two sonic shocks separated by a compression fan. The main difficulty is that 
each shock lies on a different adiabat. The approach used here was to choose a 
truncation point for the compression fan of the lower (forerunner) shock. The 
thermodynamic data at this point (VS2,ps2  in figure 6) are combined with the 
formulas given by Cramer & Sen (1987) to compute the properties of the second 
shock. The particle velocity ahead of the shock along with the sonic condition is then 
used to compute the shock position. The non-sonic shocks in figure 7 did not require 
the solutions of Cramer & Sen (1987). All properties were computed in a 
straightforward way from the shock adiabat for the van der Waals gas and standard 
identities. 
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The numerical data corresponding to the leading sonic shock in the split-shock plot 
are 

where pSl  and pSl  are the density and pressure immediately following the leading 
shock, bl, is the shock Mach number, [s] is the entropy rise and R is the gas constant. 
The pressure and density immediately before the second shock are 1 . 0 1 5 ~ ~  and 
0.862pc, respectively. This shock has sonic upstream conditions so that the shock 
Mach number is unity. After the second shock the pressure, density, and Mach 
number (computed in a frame moving with the shock) are given by 1 . 0 4 ~ ~ ~  l.OOpc, and 
0.938, respectively. The entropy rise across the second shock was found to be 
1.36 x 1 0 - 5 ~ .  

5. Shock formation and evolution 
To describe the formation of the split-shock configuration from a smooth density 

distribution, we consider the ramp-function initial condition sketched in figure 8.  
The entropy is taken to be uniform and the velocity perturbations are taken to be 
consistent with simple right-moving waves. Furthermore, the thermodynamic states 
before and after the transition region, - iL  < x < $L, are taken to be on opposite 
sides of the region of negative nonlinearity. The corresponding variation of the 
fundamental derivative is also sketched in figure 8. 

As indicated in $4  the entropy rise associated with shock splitting tends to be 
small. Even the strongest shock plotted in figure 7 only carries an entropy rise of 
4.5 x 10-eR. In order to simplify the discussion we shall approximate the flow as 
isentropic even after shocks form. 

A straightforward analysis of the shock formation process may be used to  show 
that the initial density distribution described above steepens to form two 
compression shocks. A similar analysis of triangle and sine wave initial conditions by 
the method of characteristic; may be found in Cramer & Sen (1986b). As depicted 
in figure 8, these form at the foot of the ramp p = pr as well as the top p = p, at 
dimensional times 

respectively. Here rr and r, denote the values of the fundamental derivative 
evaluated at p = pr and p = p r .  

After formation each shock increases in strength with the upstream state (p,, so) of 
the lower shock and the downstream state (pr, so) of the upper shock remaining fixed ; 
this evolution is depicted in figure 9. In accord with our assumption of isentropic flow 
and a uniform initial entropy distribution all states will lie on the same isentrope 
s = so. If the change in density across the ramp is sufficiently small, i.e. if pr and 
p, are sufficiently close to the r= 0 locus depicted in figure 1 or, equivalently, the 
inflexion points of the isentrope, each shock eventually becomes sonic. These are 
denoted by the tangent chords r-S1 and S2-1 in figure 9(a) .  Any further increase in 
strength results in a violation of the admissibility condition described in 93, i.e. the 
chord connecting the upstream and downstream states no longer remain completely 
above the adiabat. Physically, the portion of the isentropic compression behind the 
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FIGURE 9. Schematic of isentropic shock evolution. (a) Shock splitting, (b)  shock merging. 

forerunner shock cannot catch this shock and therefore increase its strength. In like 
manner, the convected sound speed ahead of the trailing shock is larger than that 
of the trailing shock after it becomes sonic. Thus, the final result is the split-shock 
configuration described in $4. 

If pl and p,. are sufficiently far from the r = 0 locus, the two shocks collide. We note 
that it is possible, although not necessary, that one of the shocks may become sonic 
before collision. However, the other will always collide with the sonic shock before 
becoming sonic itself. In figure 9 ( b )  the forerunner shock is denoted by r-M and the 
trailing shock by M-1 at the collision time. After collision the shocks merge into a 
single large-amplitude compression shock taking the flow from pr to pt. The shock 
collision and subsequent merging will occur whenever a straight line connecting 
states I and T remains above the adiabat. Otherwise, the final configuration will be 
that of shock splitting. Thus, the conclusions based on shock formation are 
completely consistent with those based on the dissipative structure and the shock 
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construction process described in the previous section. Furthermore, we have 
demonstrated that the shock splitting is not just a possible state, but is the inevitable 
result of the evolution from a smooth initial condition, at  least within the context 
of our isentropic approximation. 

6. Summary 
The main goal of the present study is to demonstrate that single-phase fluids of the 

Bethe-Zel’dovich type exhibit shock splitting and to provide exact solutions for van 
der Waals gases. Furthermore, in $3  we have shown that discontinuities of the type 
1 4  in figure 2 have no dissipative structure; the discussions of $84 and 5 show that 
such discontinuities break up into the split-shock configuration to provide the 
transition between the fixed upstream state and the imposed density, pressure or 
particle velocity downstream. Shock splitting is therefore seen to play the same role 
as the partial and total disintegrations found in previous investigations, viz. the split 
shock configurations evolve dynamically from inadmissible discontinuities. The 
analogue in the theory of perfect gases is the total disintegration of expansion shocks 
to form centred expansion fans. 

Shock splitting has also been observed in two-phase flows, see e.g. Thompson & 
Kim (1983) and Thompson et al. (1987). There are a number of interesting parallels 
with the present study, particularly in Thompson’s equilibrium model. For example, 
the effective region of negative nonlinearity produced by the kink in the adiabats, the 
shock construction procedure and predictions of merged shocks all have analogues 
here. An important distinction is that the shocks found in the present study are all 
gasdynamic shocks in the single-phase region rather than the shock-condensation 
wave structures found by Thompson and co-workers. The occurrence of shock 
splitting in sedimentation waves has also been predicted by Kynch (1952) and 
realized in the experiments of Shannon & Tory (1965). The author is indebted to one 
of the referees for pointing out the latter reference. 

The existence issues discussed in $$4 and 5 are valid for both steady and unsteady 
flows. We also anticipate that the details of the partial disintegration and shock 
splitting have analogues in steady flow configurations. Two advantages of the 
tendency to limit the strength of compression shocks in steady flows immediately 
come to mind. The first is that the losses in stagnation pressure and those due to wave 
drag are minimized owing to a reduction of the irreversible portion of the 
compression. Furthermore, Cramer & Kluwick (1984) have shown that the entropy 
rise across weak sonic shocks will be an order of magnitude smaller than normally 
predicted. Thus, we expect that even the shocks which remain will result in a 
minimum of loss. Important losses in many transonic and supersonic internal flows 
are due to shock-induced separation. Thus, the second advantage of the dis- 
integration process is the drastic reduction in the adverse pressure gradient. Future 
studies will attempt to determine whether the shock-limiting mechanism and others 
inherent in Bethe-Zel’dovich fluids can be exploited to increase the efficiency of 
turbomachinery and other flows involving dense gases. 
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